From University of Waterloo 21/03/24
![](https://superinnovators.com/wp-content/uploads/2024/03/tear-1024x585.webp)
A cross-disciplinary University of Waterloo team has developed a new contact lens material that could act as a bandage for corneal wounds while releasing drugs in a controlled manner to help the eye heal faster.
Typically, corneal abrasion patients spend seven to 10 days wearing a clear, oxygen-permeable bandage contact lens, often instilled with eyedrops containing antibiotics.
However, the one-time antibiotic application makes it difficult to ensure enough drugs stay on the eye for sustained treatment.
“It’s a targeted-release drug delivery system that is responsive to the body,” said Dr. Lyndon Jones, a professor at Waterloo’s School of Optometry & Vision Science and director of the Centre for Ocular Research & Education (CORE).
“The more injured you are, the more drug gets delivered, which is unique and potentially a game changer.”
Jones knew there was a market for a drug-delivering bandage contact lens that could simultaneously treat the eye and allow it to heal.
The question was how to develop it.
![](https://superinnovators.com/wp-content/uploads/2024/03/EE.webp)
As the University of Waterloo has several researchers and entrepreneurs building technology to disrupt the boundaries of health, Jones was able to team up with Dr. Susmita Bose (PhD’23), Dr. Chau-Minh Phan (PhD’16) and Dr. Evelyn Yim, an associate professor of chemical engineering working on collagen-based materials.
Rounding out the team were Dr. Muhammad Rizwan, a former postdoctoral fellow, and John Waylon Tse (MASc’18), a former graduate student, both with Yim’s lab.
Collagen is a protein naturally found in the eye that’s also often involved in the wound healing process – however, it’s too soft and weak to be a contact lens material.
Yim found a way to transform gelatin methacrylate, a collagen derivative, into a biomaterial 10 times stronger.
One unique property of collagen-based materials is that they degrade when exposed to an enzyme called matrix metalloproteinase-9 (MMP-9), which is naturally found in the eye.
“These enzymes are very special because they’re involved in wound healing, and when you have a wound, they’re released in greater quantity,” Phan said.
“If you have a material that can be degraded in the presence of this enzyme, and we add a drug to this material, we can engineer it so it releases the drug in a way that is proportional to the amount of enzymes present at the wound.”
“So, the bigger the wound, the higher the amount of drug released.”
![](https://superinnovators.com/wp-content/uploads/2024/03/eee.webp)
The team used bovine lactoferrin as a model wound-healing drug and entrapped it in the material.
In human cell culture study, the researchers achieved complete wound healing within five days using the drug-releasing novel contact lens material.
Another benefit of the material is that it only becomes activated at eye temperatures, providing an inbuilt storage mechanism.
The next step is fine-tuning the material, including entrapping different drugs in it.
The scientists believe their material has great potential – not only for the eye but potentially for other body sites, especially large skin ulcers.
A study outlining the researchers’ work was recently published in the journal Pharmaceutics.