From University of Waterloo 21/03/24

Illustration by Superinnovators x AI

A cross-disciplinary University of Waterloo team has developed a new contact lens material that could act as a bandage for corneal wounds while releasing drugs in a controlled manner to help the eye heal faster.

Typically, corneal abrasion patients spend seven to 10 days wearing a clear, oxygen-permeable bandage contact lens, often instilled with eyedrops containing antibiotics.

However, the one-time antibiotic application makes it difficult to ensure enough drugs stay on the eye for sustained treatment.

“It’s a targeted-release drug delivery system that is responsive to the body,” said Dr. Lyndon Jones, a professor at Waterloo’s School of Optometry & Vision Science and director of the Centre for Ocular Research & Education (CORE).

“The more injured you are, the more drug gets delivered, which is unique and potentially a game changer.”

Jones knew there was a market for a drug-delivering bandage contact lens that could simultaneously treat the eye and allow it to heal.

The question was how to develop it.

Illustration by Superinnovators x AI

As the University of Waterloo has several researchers and entrepreneurs building technology to disrupt the boundaries of health, Jones was able to team up with Dr. Susmita Bose (PhD’23), Dr. Chau-Minh Phan (PhD’16) and Dr. Evelyn Yim, an associate professor of chemical engineering working on collagen-based materials.

Rounding out the team were Dr. Muhammad Rizwan, a former postdoctoral fellow, and John Waylon Tse (MASc’18), a former graduate student, both with Yim’s lab.

Collagen is a protein naturally found in the eye that’s also often involved in the wound healing process – however, it’s too soft and weak to be a contact lens material.

Yim found a way to transform gelatin methacrylate, a collagen derivative, into a biomaterial 10 times stronger.

One unique property of collagen-based materials is that they degrade when exposed to an enzyme called matrix metalloproteinase-9 (MMP-9), which is naturally found in the eye.

“These enzymes are very special because they’re involved in wound healing, and when you have a wound, they’re released in greater quantity,” Phan said.

“If you have a material that can be degraded in the presence of this enzyme, and we add a drug to this material, we can engineer it so it releases the drug in a way that is proportional to the amount of enzymes present at the wound.”

“So, the bigger the wound, the higher the amount of drug released.”

Illustration by Superinnovators x AI

The team used bovine lactoferrin as a model wound-healing drug and entrapped it in the material.

In human cell culture study, the researchers achieved complete wound healing within five days using the drug-releasing novel contact lens material.

Another benefit of the material is that it only becomes activated at eye temperatures, providing an inbuilt storage mechanism.

The next step is fine-tuning the material, including entrapping different drugs in it.

The scientists believe their material has great potential – not only for the eye but potentially for other body sites, especially large skin ulcers.

A study outlining the researchers’ work was recently published in the journal Pharmaceutics.

More info

Paper

You may also be curious about:

Leave a Reply

Your email address will not be published. Required fields are marked *

Subscribe to our weekly newsletter

Recieve the latest innovation, emerging tech, research, science and engineering news from Superinnovators.